Practice Questions:

1. Perform the following 4-bit two's complement multiplication and verify your answer in base 10: \(\frac{3}{4} \times -\frac{1}{2} = ? \).

2. Draw the circuit generated by the following VHDL model:

   ```vhdl
   entity Review is
       port(A, C, S: in std_logic;
            B: in std_logic_vector(0 to 1);
            Y: out std_logic);
   end Review;

   architecture Behave of Review is
       signal X: std_logic_vector(0 to 1);
   begin
       Y <= X(0) when S = '0' else X(1);
       process(C)
       begin
           if rising_edge(C) then
               X <= A & A or B;
           end if;
       end process;
   end Behave;
   ```

3. Write a VHDL model for a 16-bit serial-in, serial-out shift register with inputs SI (serial input), EN (enable), and CK (rising-edge triggered clock) and a serial output (SO).

4. Given the following block diagram for a 32-bit serial adder. The control circuit uses a 5-bit counter, which outputs a signal \(K = 1 \) when it is in state 11111. When a start signal (N) is received, the registers and counter are loaded. When the addition is complete, the control circuit should go to a stop state and remain there until N is changed back to 0.

 a. Draw the state diagram for the control circuit.
 b. Write a complete VHDL model for the adder. Use two processes: one to generate the control signals and one to update the registers based on those signals.