1. Design a floating-point multiplier which uses the IEEE single precision floating-point format. Ignore special cases other than 0 and truncate the result.

 a) Draw a block diagram for the multiplier showing the necessary registers and control signals.
 b) Draw the SM Chart for the control circuit.
 c) Write a complete VHDL model for the multiplier (use two processes).
 d) Simulate for the following test data (using test vector arrays in the testbench):

 \[25.25 \times (-2.5) = -63.125 \]
 \[0 \times 25.25 = ? \]
 \[-7.5 \times -7.5 = ? \]

Hints:
- The controller needs to handle FZ, FV, and EV (but not Fnorm).
- The fractions are unsigned (not 2’s complement) multiplication. The sign bits are handled separately.
- Use the + and * operators to implement the exponent adder and fraction multiplier

 \[
 \text{o addout} \leq \left(0’ \& E1\right) + \left(0’ \& E2\right) - \text{bias};
 \]

 \[
 \text{o multout} \leq \left(1’ \& F1\right) \times \left(1’ \& F2\right);
 \]