ELEC 311 Test 2 Review

TOPICS

Combinational Logic Circuits
- Multiplexer
- Tri-State Buffer
- Decoder, (Priority) Encoder
- Read Only Memory (ROM)
- Programmable Logic Devices (CPLD, FPGA)

VHDL
- Entity, Architecture
- Types, Operators
- Libraries and Packages
- Structural Model
 - Component, Port Map
- Dataflow Model
 - Concurrent Signal Assignment Statements

Latches and Flip-Flops
- Set-Reset Latch, D Latch
- D Flip-Flop, J-K Flip-Flop, T Flip-Flop
- Timing Diagrams

Registers and Counters
- Register, Shift Register
- Tri-State Bus
- Counters
- Sequential Design

Sequential Analysis
- State Tables
- State Graphs
- Timing Diagrams
- Next State (FF) Equations
- Transition Tables

Sequential Design
- State Graphs
- State Tables
- Transition Tables
- Next State (FF) Equations
Practice Questions

1. Given a 1-to-2 binary decoder with input I, active low enable E, and active low outputs Y:
 a. Draw the logic symbol and label all signals.
 b. Fill in a truth table (using don’t cares where appropriate).
 c. Write a VHDL entity (using std_logic_vectors where appropriate).

2. Implement the following function using a 4-to-1 multiplexer:
 \[F(w,x,y,z) = \Sigma m(3,4,5,7,10,14) + \Sigma d(1,6,8,15) \]

3. Determine the ROM size and contents to implement a function which converts a two's complement number, from -4 to +2, to sign and magnitude format.

4. Given the following VHDL model, draw the schematic diagram (label completely).

   ```vhdl
   entity MUX4 is
     port (D : in std_logic_vector(3 downto 0);
           S : in std_logic_vector(1 downto 0);
           Y : out std_logic);
   end MUX4;
   architecture STRUCTURE of MUX4 is
     signal YD : std_logic_vector(1 downto 0);
     component MUX2
       port (D : in std_logic_vector(1 downto 0);
             S : in std_logic;
             Y : out std_logic);
     end component;
     begin
       M1 : MUX2 port map (D(3), D(2), S(0), YD(1));
       M2 : MUX2 port map (D(1), D(0), S(0), YD(0));
       M3 : MUX2 port map (YD(1), YD(0), S(1), Y);
   end STRUCTURE;
   ```

5. Design a synchronous circuit that implements a 3-bit modulo-6 counter (000, 001, ..., 101, 000, ...):
 a. Fill in a transition table (use don’t cares for undefined next states).
 b. Minimize the next state (D FF) equations using Karnaugh maps.