ELEC 311 Test 1 Review

TOPICS

Number Systems
- Base conversion (2, 10, 16)
- Negative numbers: sign and magnitude, 2’s complement
- Arithmetic: addition (subtraction), overflow, multiplication

Codes
- BCD, weighted, m-out-of-n, Gray, ASCII, Unicode

Boolean Algebra
- Logic gates: AND, OR, NOT, XOR
- Circuit analysis: logic equations, truth tables
- Laws and theorems: identity, complements, simplification (adjacency)
- Sum-of-products (SOP), product-of-terms (POS)

Combinational Design
- Word problem -> truth table
- Minterms and Maxterms
- Incompletely specified functions (don't cares)
- Propagation delay, timing diagrams, and hazards

Minimizing Switching Functions
- Adjacency theorem, essential prime implicants
- Karnaugh maps
- Quine McCluskey

NAND and NOR Gates
- DeMorgan's Laws
- SOP -> NAND-NAND, POS -> NOR-NOR
- CMOS logic gates
- Noise Margin
Practice Questions

1. Perform the following subtraction using 12-bit 2’s complement arithmetic and verify your answer in base 10.

\[52.A_{16} - 3C_{16} = \quad \text{________}_{16} \]

2. Minimize the following function using a Karnaugh-map and draw a NAND-NAND circuit diagram that implements your result.

\[F(A,B,C,D) = \Sigma m(1,9,11,12,13) + \Sigma d(0,3) \]

3. Minimize the function above using Quine-McCluskey.

4. Design a truth table for a combinational logic circuit which indicates whether the difference between 2 bits is greater than or equal to a 3rd bit.

5. Determine the noise margin of a CMOS NAND gate with the following specs:

\[V_{OH_{\text{min}}} = 3.9 \text{ V}, \quad V_{OL_{\text{max}}} = 0.2 \text{ V}, \quad V_{IH_{\text{min}}} = 2.8 \text{ V}, \quad V_{IL_{\text{max}}} = 1.4 \text{ V} \]